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SOME NEW CLASSES OF STRONGLY GENERALIZED PREINVEX

FUNCTIONS

M.A. NOOR1, K.I. NOOR1

Abstract. In this paper, we define and introduce some new concepts of the relative strongly

preinvex functions and relative strongly monotone operators with respect to the auxiliary non-

negative function and bifunction. We establish some new relationships among various concepts

of relative strongly preinvex functions. As special cases, one can obtain various new and known

consequences of our results. Results obtained in this paper can be viewed as refinement and

improvement of previously known results.
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1. Introduction

In recent years, several extensions and generalizations have been considered for classical con-

vexity. Strongly convex functions were introduced and studied by Polyak [34], which play an

important part in the optimization theory and related areas, see, for example, [2, 3, 4, 5, 8, 9,

10, 16, 17, 18, 19, 20] and the references therein. Adamek [1] introduced another class of convex

functions with respect to an arbitrary non-negative function, called relative strongly convex func-

tions. With an appropriate choice of non-negative function, one can obtain various known classes

of convex functions. For the properties of the relative strongly convex functions, see Adamek

[1], Nikodem et al. [2, 5, 7, 8, 9, 10] and Noor [15]. Hanson [7] introduced the concept of invex

function for the differentiable functions, which played significant part in the mathematical pro-

gramming. Ben-Israel and Mond [6] introduced the concept of invex set and preinvex functions.

It is known that the differentiable preinvex function are invex functions. The converse also

holds under certain conditions, see [20]. Noor [16] proved that the minimum of the differentiable

preinvex functions on the invex set can be characterized by a class of variational inequalities,

which is known as the variational-like inequality. For the recent developments in variational-like

inequalities and invex equilibrium problems, see [16, 17, 19, 29, 31, 32, 33, 35, 36, 37, 38] and

the references therein. Noor [20, 21, 22] proved that a function f is preinvex function, if and

only if, it satisfies the Hermite-Hadamard type integral inequality. This result has inspired a

great deal of subsequent work which has expanded the role and applications of the invexity in

nonlinear optimization and engineering sciences. Noor at el. [23, 24, 25, 28, 30] investigated the

properties of the strongly preinvex functions and their variant forms.

Inspired by the work of Adamek [1] and Nikodem et al. [2, 5, 8, 9, 10, 14], we introduce and

consider another class of nonconvex functions with respect to an arbitrary non-negative function.

This class of nonconvex functions is called the relative strongly preinvex functions. Serval new

concepts of monotonicity are introduced. We establish the relationship between these classes

and derive some new results under some mild conditions. As special cases, on can obtain various
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new and refined versions of known results. It is expected that the ideas and techniques of this

paper may stimulate further research in this field.

2. Preliminary results

Let Kη be a nonempty closed set in a real Hilbert space H. We denote by ⟨·, ·⟩ and ∥ · ∥ be

the inner product and norm, respectively. Let F : Kη → R be a continuous function and let

h : [0,∞) → R be a non-negative function.

Definition 2.1. [6].The set Kη in H is said to be invex set with respect to an arbitrary contin-

uous bifunction η(·, ·) :: Kη ×Kη → R, if

u+ tη(v, u) ∈ Kη, ∀u, v ∈ Kη, t ∈ [0, 1].

The invex set Kη is also called η-connected set. Note that the invex set with η(v, u) = v − u

is a convex set, but the converse is not true. For example, the set Kη = R− (−1
2 ,

1
2) is an invex

set with respect to η, where

η(v, u) =

{
v − u, for v > 0, u > 0 or v < 0, u < 0

u− v, for v < 0, u > 0 or v < 0, u < 0.

It is clear that Kη is not a convex set.

Remark 2.1. We would like to emphasize that, if u+ η(v, u) = v, ∀u, v ∈ Kη, then η(v, u) =

v − u. Consequently, the η-invex set reduces to the convex set K. Thus, Kη ⊂ K. This implies

that every convex set is an invex set, but the converse is not true.

From now onward Kη is a nonempty closed invex set in H with respect to the bifunction

η(·, ·), unless otherwise specified.

Definition 2.2. The function F on the invex set Kη is said to be relative strongly preinvex with

respect to the bifunction η(·, ·) and a non-negative function h, if there exists a constant µ > 0,

such that

F (u+ tη(v, u)) ≤ (1− t)F (u) + tF (v)− µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

The function F is said to be relative strongly preincave if and only if, −F is relative strongly

preinvex. Note that every relative strongly convex function is a relative strongly preinvex, but

the converse is not true.

Consequently, we have a new concept of affine preinvex functions.

Definition 2.3. The function F on the invex set Kη is said to be relative strongly affine preinvex

with respect to the bifunction η(·, ·) and a non-negative function h, if there exists a constant

µ > 0, such that

F (u+ tη(v, u)) = (1− t)F (u) + tF (v)− µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

We now discuss some special cases of the relative strongly preinvex functions.

(I). If h(η(v, u)) =∥ η(v, u) ∥2, then the relative strongly preinvex function becomes strongly

preinvex functions, that is,

F (u+ tη(v, u)) ≤ (1− t)F (u) + tF (v)− µt(1− t) ∥ η(v, u) ∥2, ∀u, v ∈ Kη, t ∈ [0, 1].
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For the properties of the strongly preinvex functions in variational inequalities and equilibrium

problems, see Noor [16, 17, 19, 29, 31, 32].

(II). If η(v, u) = v − u, then the invex set becomes a convex set and preinvex function

reduces to the convex function. In this case, Definition 2.2 becomes:

Definition 2.4. [1]. The function F on the invex set Kη is said to be relative strongly convex

with respect to a non-negative function h, if there exists a constant µ > 0, such that

F ((1− t)u+ tv) ≤ (1− t)F (u) + tF (v)− µt(1− t)h(v − u), ∀u, v ∈ Kη, t ∈ [0, 1].

For the properties and other aspects of the relative strongly functions, see Adamek [1] and

Noor [15].

(III). If µ = 0. then Definition 2.2 reduces to:

Definition 2.5. The function F on the invex set Kη is said to be preinvex, if

F ((u+ tη(v, u)) ≤ (1− t)F (u) + tF (v), ∀u, v ∈ Kη, t ∈ [0, 1],

which is mainly due to Ben-Isreal and Mond [9].

Definition 2.6. The function F on the invex set Kη is said to be relative strongly quasi preinvex

with respect to a non-negative function h and the bifunction η, if there exists a constant µ > 0

such that

F (u+ tη(v, u)) ≤ max{F (u), F (v)} − µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

Definition 2.7. The function F on the invex set Kη is said to be relative strongly log-preinvex

with respect to h and η(·, ·) in the second sense, if there exists a constant µ > 0 such that

logF (u+ tη(v, u)) ≤ (1− t) logF (u)) + t logF (v)

−µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1],

where F (·) > 0.

Definition 2.8. The function F on the invex set Kη is said to be relative strongly log-preinvex

with respect to h and η(·, ·), if there exists a constant µ > 0 such that

F (u+ tη(v, u)) ≤ (F (u))1−t(F (v))t − µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1],

where F (·) > 0.

From the above definition, we have

F (u+ tη(v, u)) ≤ (F (u))1−t(F (v))t − µt(1− t)h(η(v, u))

≤ (1− t)F (u) + tF (v)− µt(1− t)h(η(v, u))

≤ max{F (u), F (v)} − µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

This shows that every relative strongly log-preinvex function is relative strongly preinvex func-

tion and every relative strongly preinvev function is a relative quasi-preinvex function. However,

the converse is not true.

For t = 1, Definition 2.2 and 2.8 reduce to the following condition, which is mainly due to

Noor and Noor [8].
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Condition A.

F (u+ tη(v, u)) ≤ F (v) ∀v ∈ Kη.

For the applications of Condition A, see [2, 7, 10, 11].

Definition 2.9. The differentiable function F on the invex set Kη is said to be relative strongly

invex function with respect to an arbitrary non-negative function h and the bifunction η(·, ·), if
there exists a constant µ > 0 such that

F (v)− F (u) ≥ ⟨F ′(u), η(v, u)⟩+ µh(η(v, u)), ∀u, v ∈ Kη,

where F ′(u)), is the differential of F at u.

It is noted that, if µ = 0, then the Definition 2.9 reduces to the definition of the invex

functions as introduced by Hanson [7]. It is well known that the concepts of preinvex and invex

functions play a significant role in the mathematical programming and optimization theory, see

[1, 2, 5, 7, 8, 9, 10, 11, 12] and the references therein.

Definition 2.10. The differentiable function F on the invex set Kη is said to be relative strongly

super-quadratic invex function with respect to an arbitrary non-negative function h and the

bifunction η(·, ·), if there exist constants µ > 0 and ξ ∈ F ′(u) such that

F (v)− F (u) ≥ ⟨ξ, η(v, u)⟩+ µh(η(v, u)), ∀u, v ∈ Kη.

Remark 2.2. Note that, if µ = 0, then the Definition 2.2-2.8 reduces to the ones in [6, 8].

Definition 2.11. An operator T : Kη → H is said to be:

(1) relative strongly η-monotone, if and if, there exists a constant α > 0 such that

⟨Tu, η(v, u)⟩+ ⟨Tv, η(u, v)⟩ ≤ −α{h(η(v, u)) + h(η(u, v))}, u, v ∈ Kη,

(2) η-monotone, if and if,

⟨Tu, η(v, u)⟩+ ⟨Tv, η(u, v)⟩ ≤ 0, u, v ∈ Kη,

(3) relative strongly η-pseudomonotone, if and if, there exists

a constant ν > 0 such that

⟨Tu, η(v, u)⟩+ νh(η(v, u)) ≥ 0 ⇒ −⟨Tv, η(u, v)⟩ ≥ 0, u, v ∈ Kη,

(4) relative strongly relaxed η-pseudomonotone, if and if, there exists

a constant µ > 0 such that

⟨Tu, η(v, u)⟩ ≥ 0 ⇒ −⟨Tv, η(u, v)⟩+ µh(η(u, v)) ≥ 0, u, v ∈ Kη,

(5) strictly η-monotone, if and if,

⟨Tu, η(v, u)⟩+ ⟨Tv, η(u, v)⟩ < 0, u, v ∈ Kη,

(6) η-pseudomonotone, if and if,

⟨Tu, η(v, u)⟩ ≥ 0 ⇒ ⟨Tv, η(u, v)⟩ ≤ 0, u, v ∈ Kη,

(7) quasi η-monotone, if and if,

⟨Tu, η(v, u)⟩ > 0 ⇒ ⟨Tv, η(u, v)⟩ ≤ 0, u, v ∈ Kη,
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(8) strictly η-pseudomonotone, if and if,

⟨Tu, η(v, u)⟩ ≥ 0 ⇒ ⟨Tv, η(u, v)⟩ < 0, u, v ∈ Kη.

Note that, if η)v, u) = v−u, then the invex set Kη is a convex set K. This clearly shows that

Definition 2.11 is more general than and includes the ones in [7, 8, 9, 10, 11] as special cases.

Definition 2.12. A differentiable function F on the invex set Kη is said to be relative strongly

pseudo η-invex function, if and if, if there exists a constant µ > 0 such that

⟨F ′(u), η(v, u)⟩+ µh(η(u, v)) ≥ 0 ⇒ F (v)− F (u) ≥ 0, ∀u, v ∈ Kη.

Definition 2.13. A differentiable function F on Kη is said to be relative strongly quasi-invex

function, if and if, if there exists a constant µ > 0 such that

F (v) ≤ F (u) ⇒ ⟨F ′(u), η(v, u)⟩+ µh(η(u, v)) ≤ 0, ∀u, v ∈ Kη.

Definition 2.14. The function F on the set Kη is said to be pseudo-invex, if

⟨F ′(u), η(v, u)⟩ ≥ 0 ⇒ F (v) ≥ F (u), ∀u, v ∈ Kη.

Definition 2.15. The differentiable function F on the Kη is said to be quasi-invex function, if

F (v) ≤ F (u) ⇒ ⟨F ′(u), η(v, u)⟩ ≤ 0, ∀u, v ∈ Kη.

If η(v, u) = −η(v, u),∀u, v ∈ Kη, that is, the function η(·, ·) is skew-symmetric, then Defini-

tion 2.11-2.15 reduces to the ones in [9, 10, 11]. This shows that the concepts introduced in this

paper represent an improvement of the previously known ones. All these new concepts may play

important and fundamental part in the mathematical programming and optimization.

We also need the following assumption regarding the bifunction η(·, ·), which is due to Mohan

and Neogy [11].

Condition C. Let η(·, ·) : Kη ×Kη → H satisfy assumptions

η(u, u+ tη(v, u)) = −tη(v, u),

η(v, u+ tη(v, u)) = (1− t)η(v, u), ∀u, v ∈ Kη, t ∈ [0, 1].

Clearly for t = 0, we have η(u, v) = 0, if and only if u = v, ∀u, v ∈ Kη. One can easily show

[12, 13] that η(u+ tη(v, u), u) = tη(v, u),∀u, v ∈ Kη.

3. Main results

In this section, we consider some basic properties of relative strongly preinvex functions on

the invex set Kη. Through out this section we assume that the non-negative function h is even

and homogeneous of degree two, that is,

h(−u) = h(u), h(γu) = γ2h(u), ∀u ∈ H, γ ∈ R, unless otherwise specified.

Theorem 3.1. Let F be a differentiable function on the invex set Kη in H and let Condition C

hold. Then the function F is relative strongly preinvex function, if and only if, F is a relative

strongly invex function.

Proof. Let F be a relative strongly preinvex function on the invex set Kη. Then

F (u+ tη(v, u)) ≤ (1− t)F (u) + tF (v)− t(1− t)µh(η(v, u)), ∀u, v ∈ Kη,
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which can be written as

F (v)− F (u) ≥ {F (u+ tη(v, u))− F (u)

t
}+ (1− t)µh(η(v, u)).

Taking the limit in the above inequality as t → 0 , we have

F (v)− F (u) ≥ ⟨F ′(u), η(v, u))⟩+ µh(η(v, u)).

This shows that F is a relative strongly invex function.

Conversely, let F be a relative strongly invex function on the invex set K. Then ∀u, v ∈
Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη and using Condition C, we have

F (v)− F (u+ tη(v, u))

≥ ⟨F ′(u+ tη(v, u)), η(v, u+ tη(v, u))⟩+ µh(η(v, u+ tη(v, u)))

= (1− t)⟨F ′(u+ tη(v, u)), η(v, u)⟩+ µ(1− t)2h(η(v, u)). (1)

In a similar way, we have

F (u)− F (u+ tη(v, u))

≥ ⟨F ′(u+ tη(v, u)), η(u, u+ tη(v, u))⟩+ µh(η(u, u+ tη(v, u)))

= −t⟨F ′(u+ tη(v, u)), η(v, u)⟩+ µt2h(η(v, u)). (2)

Multiplying (1) by t and (2) by (1− t) and adding the resultant, we have

F (u+ tη(v, u)) ≤ (1− t)F (u) + tF (v)− t(1− t)µh(η(v, u)),

showing that F is a relative strongly preinvex function. �

Theorem 3.2. Let F be differentiable on the invex set Kη. Let Condition A and Condition

C Hold. The F is a relative strongly invex function, if and only if, F ′(.) is relative strongly

η-monotone.

Proof. Let F be a relative strongly invex function on the invex set Kη. Then

F (v)− F (u) ≥ ⟨F ′(u), η(v, u))⟩+ µh(η(v, u)) ∀u, v ∈ Kη. (3)

Changing the role of u and v in (3), we have

F (u)− F (v) ≥ ⟨F ′(v), η(u, v)⟩+ µh(η(u, v)) ∀u, v ∈ Kη. (4)

Adding (3) and (4), we have

⟨F ′(u), η(v, u))⟩+ ⟨F ′(v), η(u, v)⟩ ≥ −µ{h(η(v, u)) + h(η(u, v))}, (5)

which shows that F ′ is relative strongly η-monotone.

Conversely, let F ′(.) be relative strongly η-monotone. From (5), we have

⟨F ′(v), η(u, v)⟩ ≥ ⟨F ′(u), η(v, u))⟩ − {h(η(v, u)) + h(η(u, v))}, (6)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1] vt = u + tη(v, u) ∈ Kη. Taking v = vt in (6) and

using Condition C, we have

⟨F ′(vt), η(u, u+ tη(v, u))⟩ ≤ ⟨F ′(u), η(u+ tη(v, u), u))⟩ − µ{h(η(u+ tη(v, u), u))

+ h(η(u, u+ tη(v, u)))}
= −t⟨F ′(u), η(v, u)⟩ − 2t2µh(η(v, u)),
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which implies that

⟨F ′(vt), η(v, u)⟩ ≥ ⟨F ′(u), η(v, u) + 2µth(η(v, u)). (7)

Let g(t) = F (u+ tη(v, u)). Then from (7), we have

g′(t) = ⟨F ′(u+ tη(v, u)), η(v, u)⟩
≥ ⟨F ′(u), η(v, u) + 2µth(η(v, u)). (8)

Integrating (8) between 0 and 1, we have

g(1)− g(0) ≥ ⟨F ′(u), η(v, u) + µh(η(v, u)).

that is,

F (u+ tη(v, u))− F (u) ≥ ⟨F ′(u), η(v, u) + µh(η(v, u)).

By using Condition A, we have

F (v)− F (u) ≥ ⟨F ′(u), η(v, u) + µh(η(v, u)).

which shows that F is relative strongly invex function on the invex set Kη. �

From Theorem 3.1 and Theorem 3.2, we have

relative strongly preinvex function F ⇒ relative strongly invex function F ⇒ relative strongly

η-monotonicity of the differential F ′ and conversely, if Conditions A and C hold.

We now give a necessary condition for strongly η-pseudo-invex function.

Theorem 3.3. Let F ′(.) be relative strongly relaxed η- pseudomonotone and Condition A and

C hold. Then F is a relative strongly η-pseudo-invex function.

Proof. Let F ′(.) be relative strongly relaxed η-pseudomonotone. Then, ∀u, v ∈ Kη,

⟨F ′(u), η(v, u)⟩ ≥ 0.

implies that

−⟨F ′(v), η(u, v)⟩ ≥ αh(η(u, v)). (9)

Since K is an invex set, ∀u, v ∈ Kη, t ∈ [0, 1], vt = u+ tη(v, u) ∈ Kη. Taking v = vt in (9) and

using condition Condition C, we have

−⟨F ′(u+ tη(v, u)), η(u, v)⟩ ≥ tαh(η(v, u)). (10)

Let

ξ(t) = F (u+ tη(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

Then, using (10), we have

ξ′(t) = ⟨F ′(u+ tη(v, u)), η(u, v)⟩ ≥ tαh(η(v, u)).

Integrating the above relation between 0 to 1, we have

ξ(1)− ξ(0) ≥ α

2
h(η(v, u)),

that is,

F (u+ tη(v, u))− F (u) ≥ α

2
h(η(v, u)),
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which implies, using Condition A,

F (v)− F (u) ≥ α

2
h(η(v, u)),

showing that F is a relative strongly η-pseudo-invex function. �

As special cases of Theorem 3.3, we have the following:

Theorem 3.4. Let the differentiable F ′(.) of a function F (, ) on the invex set K be η-pseudomonotone.

If Conditions A and C hold, then F is pseudo η-invex function.

Theorem 3.5. Let the differential F ′(.) of a function F (.) on the invex set K be relative strongly

η-pseudomonotone. If Conditions A and C hold, then F is relative strongly pseudo η-invex

function.

Theorem 3.6. Let the differential F ′(.) of a function F (.) on the invex set Kη be relative

strongly η-pseudomonotone. If Conditions A and C hold, then F is relative strongly pseudo

η-invex function.

Theorem 3.7. Let the differential F ′(.) of a function F (.) on the invex set Kη be η-pseudomonotone.

If Conditions A and C hold, then F is pseudo invex function.

Theorem 3.8. Let the differential F ′(.) of a differentiable preinvex function F (.) be Lipschitz

continuous on the invex set Kη with a constant β > 0. Then

F (u+ η(v, u))− F (u) ≤ ⟨F ′(u), η(v, u)⟩+ β

2
∥η(v, u)∥2, u, v ∈ Kη.

Proof. Let K be an invex set. Then ∀u, v ∈ Kη, t ∈ [0, 1], u + tη(v, u) ∈ Kη. Now we consider

the function

ϕ(t) = F (u+ tη(v, u))− F (u)− t⟨F ′(u), η(v, u)⟩.

from which it follows that ϕ(0) = 0 and

ϕ′(t) = ⟨F ′(u+ tη(v, u)), η(v, u)⟩ − ⟨F ′(u), η(v, u)⟩. (11)

Integrating (13) between 0 to 1, we have

ϕ(1) = F (u+ η(v, u))− F (u)− ⟨F ′(u), η(v, u)⟩

≤
∫ 1

0
| ϕ′(t) | dt

=

∫ 1

0
| F ′(u+ tη(v, u)), η(v, u)⟩ − ⟨F ′(u), η(v, u)⟩ | dt

≤ β

∫ 1

0
t∥η(v, u)∥2dt

=
β

2
∥η(v, u)∥2,

which implies that

F (u+ η(v, u))− F (u) ≤ ⟨F ′(u), η(v, u)⟩+ β

2
∥η(v, u)∥2. (12)

�

Definition 3.1. The function F is said to be sharply relative strongly pseudo preinvex, if there

exists a constant µ > 0 such that

⟨F ′(u), η(v, u)⟩ ≥ 0 ⇒ F (v) ≥ F (v + tη(v, u)) + µt(1− t)h(η(v, u)) ∀u, v ∈ Kη, t ∈ [0, 1].
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Theorem 3.9. Let F be a sharply relative strongly pseudo preinvex function on Kη with a

constant µ > 0. Then

−⟨F ′(v), η(v, u)⟩ ≥ µh(η(v, u)) ∀u, v ∈ Kη.

Proof. Let F be a sharply relative strongly pseudo preinvex function on Kη. Then

F (v) ≥ F (v + tη(v, u)) + µt(1− t)h(η(v, u)), ∀u, v ∈ Kη, t ∈ [0, 1].

from which we have

F (v + tη(v, u))− F (v)

t
+ µt(1− t)h(η(v, u)) ≤ 0.

Taking limit in the above inequality, as t → 0, we have

−⟨F ′(v), η(v, u)⟩ ≥ µh(η(v, u)),

the required result. �

Definition 3.2. A function F is said to be a pseudo preinvex function, if there exists a strictly

positive bifunction W (., .), such that

F (v) < F (u)

⇒
F (u+ tη((v, u)) < F (u) + t(t− 1)W (v, u),∀u, v ∈ Kη, t ∈ [0, 1].

Theorem 3.10. If the function F is higher order strongly convex function such that F (v) <

F (u), then the function F is higher order strongly pseudo preinvex.

Proof. Since F (v) < F (u) and F is higher order strongly preinvex function, then

∀u, v ∈ Kη, t ∈ [0, 1], we have

F (u+ η(v, u)) ≤ F (u) + t(F (v)− F (u))− µt(1− t)h(η(v, u))

< F (u) + t(a− t)(F (v)− F (u))− µt(1− t)h(η(v, u))

= F (u) + t(t− 1)(F (u)− F (v))− µt(1− t)h(η(v, u))

< F (u) + t(t− 1)W (u, v)− µt(1− t)h(η(v, u)), ∀u, v ∈ Kη,

�

where W (u, v) = F (u)− F (v) > 0, the required result.

We now discuss the optimality for the differentiable generalized strongly preinvex functions,

which is the main motivation of our next result.

Theorem 3.11. Let F be a differentiable higher order strongly preinvex function with modulus

µ > 0. If u ∈ Kη is the minimum of the function F, then

F (v)− F (u) ≥ µh(η(v, u)), ∀u, v ∈ Kη. (13)

Proof. Let u ∈ Kη be a minimum of the function F. Then

F (u) ≤ F (v),∀v ∈ Kη. (14)

Since K is an invex set, so, ∀u, v ∈ Kη, t ∈ [0, 1],

vt = u+ tη(v, u) ∈ Kη.
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Taking v = vt in (14), we have

0 ≤ lim
t→0

{F (u+ tη(v, u))− F (u)

t
} = ⟨F ′(u), η(v, u)⟩. (15)

Since F is differentiable higher order strongly preinvex function, so

F (u+ tη(v, u)) ≤ F (u) + t(F (v)− F (u))− µt(1− t)h(η(v, u)), ∀u, v ∈ Kη,

from which, using (15), we have

F (v)− F (u) ≥ lim
t→0

{F (u+ tη(v, u))− F (u)

t
}+ µt(1− t)h(η(v, u))

= ⟨F ′(u), η(v, u)⟩+ µh(η(v, u)),

the required result (13). �

Remark 3.1. We would like to mention that, if

⟨F ′(u), η(v, u)⟩+ µh(η(v, u)) ≥ 0, ∀u, v ∈ Kη, (16)

then u ∈ Kη is the minimum of the function F.

The inequality of the type (16) is called the strongly variational-like inequality. In many

applications, the strongly variational-like inequality may not arise as the optimality conditions

of the differentiable strongly preinvex functions. These facts motivated to introduce a more

general problem of which (16) is a special case. To be more precise, for given nonlinear operator

T and an arbitrary bifunction η(., .), consider the problem of finding u ∈ Kη such that

⟨Tu, η(v, u)⟩+ µh(η(v, u)) ≥ 0, ∀u, v ∈ Kη, (17)

which is called the strongly variational-like inequality. Using the auxiliary principle technique

as developed by Noor [19, 20], one can suggest and investigate various iterative methods for

solving strongly variational-like inequalities.

Conclusion

In this paper, we have introduced and studied a new class of preinvex functions with respect

to any arbitrary function and bifunction. It is shown that several new classes of strongly prein-

vex and convex functions can be obtained as special cases of these relative strongly preinvex

functions. We have studied the basic properties of these functions. The optimality condi-

tions of the differentiable higher order preinvex functions are characterized by a class of higher

order variational-like inequalities. It is an interesting problem to develop some efficient and

implementable numerical techniques for solving the variational-like inequalities. For recent gen-

eralizations and applications of the preinvex functions and their variant forms, see Noor and

Noor [26, 27, 33] and the references therein It is expected that the ideas and techniques of this

paper may motivate further research.
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